Course Description
This course introduces students to areas of law that govern computer engineering and design. The goals of the course include mastery of a set of legal doctrines, as well as immersion in the legal method used by lawyers to analyze problems and by judges to decide cases. Students can expect to learn how to evaluate computer engineering methods and projects through the lens of legal analysis.

Prior Course Number: 5194
Transcript Abbreviation: LegalTopicsforCSE
Grading Plan: Letter Grade
Course Deliveries: Classroom
Course Levels: Undergrad, Graduate
Student Ranks: Senior, Masters, Doctoral
Course Offerings: Autumn, Spring
Flex Scheduled Course: Never
Course Frequency: Even Years
Course Length: 14 Week
Credits: 3.0
Repeatable: No
Time Distribution: 3.0 hr Lec
Expected out-of-class hours per week: 6.0
Graded Component: Lecture
Credit by Examination: No
Admission Condition: No
Off Campus: Never
Campus Locations: Columbus
Prerequisites and Co-requisites: Philos 1338 or CSE 2501, and 3901 or 3902 or 3903; or grad standing; or permission of instructor.
Exclusions:
Cross-Listings:

Course Rationale: Train students to be fluent in the legal mechanisms that touch on the computer engineering profession; Expose students to multidisciplinary pathways.

The course is required for this unit's degrees, majors, and/or minors: No
The course is a GEC: No
The course is an elective (for this or other units) or is a service course for other units: Yes

Subject/CIP Code:
Subsidy Level: Baccalaureate Course

Programs

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS CSE</td>
<td>BS Computer Science and Engineering</td>
</tr>
<tr>
<td>MS CSE</td>
<td>MS Computer Science and Engineering</td>
</tr>
<tr>
<td>PhD CSE</td>
<td>PhD Computer Science and Engineering</td>
</tr>
</tbody>
</table>

Course Goals
Be competent in the identification of legal issues that arise in the development and application of computing technology in modern society

Be competent in the ability to formulate and advocate for multiple points of view in analyzing legal disputes arising in the context of computing technology

Be familiar with the larger legal, business, and societal contexts in which decisions are made regarding the creation, development, and use of computing technology

Be familiar with weighing the potential costs and benefits of pursuing different legal strategies with respect to computing technology

Be familiar with effective methods of written and oral communication

Be exposed to legal issues that computing professionals may encounter as part of their practice

<table>
<thead>
<tr>
<th>Course Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
</tr>
<tr>
<td>Trade secrets</td>
</tr>
<tr>
<td>Patents</td>
</tr>
<tr>
<td>Copyrights</td>
</tr>
<tr>
<td>Trademarks</td>
</tr>
<tr>
<td>Designs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Representative Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read edited excerpts from judicial opinions and background texts</td>
</tr>
<tr>
<td>Write short responses to selected problems</td>
</tr>
<tr>
<td>Final paper analyzing the legal dimensions of a computer science project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect</td>
</tr>
<tr>
<td>Short response pieces or midterm exams</td>
</tr>
<tr>
<td>Class participation</td>
</tr>
<tr>
<td>Final paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Representative Textbooks and Other Course Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Patterns of Information Law: Intellectual Property Done Right</td>
</tr>
<tr>
<td>Software & Internet Law</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABET-EAC Criterion 3 Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Contribution</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>***</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>Course Contribution</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>***</td>
</tr>
<tr>
<td>***</td>
</tr>
<tr>
<td>***</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>**</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

BS CSE Program Outcomes

<table>
<thead>
<tr>
<th>Course Contribution</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>a an ability to apply knowledge of computing, mathematics including discrete mathematics as well as probability and statistics, science, and engineering;</td>
</tr>
<tr>
<td></td>
<td>b an ability to design and conduct experiments, as well as to analyze and interpret data;</td>
</tr>
<tr>
<td></td>
<td>c an ability to design, implement, and evaluate a software or a software/hardware system, component, or process to meet desired needs within realistic constraints such as memory, runtime efficiency, as well as appropriate constraints related to economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability considerations;</td>
</tr>
<tr>
<td>***</td>
<td>d an ability to function on multi-disciplinary teams;</td>
</tr>
<tr>
<td>*</td>
<td>e an ability to identify, formulate, and solve engineering problems;</td>
</tr>
<tr>
<td>***</td>
<td>f an understanding of professional, ethical, legal, security and social issues and responsibilities;</td>
</tr>
<tr>
<td>***</td>
<td>g an ability to communicate effectively with a range of audiences;</td>
</tr>
<tr>
<td>***</td>
<td>h an ability to analyze the local and global impact of computing on individuals, organizations, and society;</td>
</tr>
<tr>
<td>*</td>
<td>i a recognition of the need for, and an ability to engage in life-long learning and continuing professional development;</td>
</tr>
<tr>
<td>**</td>
<td>j a knowledge of contemporary issues;</td>
</tr>
<tr>
<td></td>
<td>k an ability to use the techniques, skills, and modern engineering tools necessary for practice as a CSE professional;</td>
</tr>
<tr>
<td></td>
<td>l an ability to analyze a problem, and identify and define the computing requirements appropriate to its solution;</td>
</tr>
<tr>
<td></td>
<td>m an ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices;</td>
</tr>
<tr>
<td></td>
<td>n an ability to apply design and development principles in the construction of software systems of varying complexity.</td>
</tr>
</tbody>
</table>

Prepared by: Kathryn Reeves