CSE 8998 (Approved): PhD Research in Computer Science and Engineering

Course Description

PhD research in Computer Science and Engineering.

Prior Course Number: CSE 999

Transcript Abbreviation: PhD Research CSE **Grading Plan:** Satisfactory/Unsatisfactory

Course Deliveries: Classroom Course Levels: Graduate Student Ranks: Doctoral

Course Offerings: Autumn, Spring, May, Summer, May + Summer

Flex Scheduled Course: Always Course Frequency: Every Year Course Length: 14 Week

Credits: 1.0 - 10.0 Repeatable: Yes

Maximum Repeatable Credits: 100.0 Total Completions Allowed: 10

Allow Multiple Enrollments in Term: No **Graded Component:** Independent Study

Credit by Examination: No Admission Condition: No Off Campus: Sometimes Campus Locations: Columbus Prerequisites and Co-requisites:

Exclusions: Cross-Listings:

The course is required for this unit's degrees, majors, and/or minors: No

The course is a GEC: No

The course is an elective (for this or other units) or is a service course for other units: Yes

Subject/CIP Code: 14.0901 Subsidy Level: Doctoral Course

Programs

Abbreviation	Description
PhD CSE	PhD Computer Science and Engineering

Course Topics

Topic	Lec	Rec	Lab	Cli	IS	Sem	FE	Wor
PhD research in Computer Science and Engineering.								

ABET-EAC Criterion 3 Outcomes

Course Contribution		College Outcome
	a	An ability to apply knowledge of mathematics, science, and engineering.
	b	An ability to design and conduct experiments, as well as to analyze and interpret data.
	c	An ability to design a system, component, or process to meet desired needs.
	d	An ability to function on multi-disciplinary teams.
	e	An ability to identify, formulate, and solve engineering problems.
	f	An understanding of professional and ethical responsibility.
	g	An ability to communicate effectively.
	h	The broad education necessary to understand the impact of engineering solutions in a global and societal context.
	i	A recognition of the need for, and an ability to engage in life-long learning.
	j	A knowledge of contemporary issues.
	k	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Prepared by: Brittany Jones